Prof. Dr.-Ing. Reiner Anderl

Computer Integrated Design (Datenverarbeitung in der Konstruktion, DiK) Fachbereich Maschinenbau Technische Universität Darmstadt Otto-Berndt-Straße 2 D-64287 Darmstadt Email: anderl@dik.tu-darmstadt.de Tel: +49 6151 16-6001

TECHNISCHE UNIVERSITÄT

DARMSTADT

Overview

- 1. Introduction
- 2. Fundamental Approaches of Industrie 4.0 Technology
 - RAMI 4.0 The Reference Architecture Model Industrie 4.0
 - Cyber-Physical Systems
 - Internet Technology
 - Manufacturing Objects as Information Carriers
 - Holistic Approach for Safety, Security, Privacy and Knowledge Protection
- 3. Use Case Scenarios
- 4. Transfering Industrie 4.0 to Industry
- 5. Conclusion

Overview

1. Introduction

- 2. Fundamental Approaches of Industrie 4.0 Technology
 - RAMI 4.0 The Reference Architecture Model Industrie 4.0
 - Cyber-Physical Systems
 - Internet Technology
 - Manufacturing Objects as Information Carriers
 - Holistic Approach for Safety, Security, Privacy and Knowledge
 Protection
- 3. Use Case Scenarios
- 4. Transfering Industrie 4.0 to Industry
- 5. Conclusion

Computer Integrated Design Fachgebiet Datenverarbeitung in der Konstruktion (DiK)

Overview:

- Computer Integrated Design
- Head: Prof. Dr.-Ing. R. Anderl
- 20 Research Assistants
- 5 Technical and Administrative Staff, ~ 50 Teaching Assistents

International Competence and Experience in the Fields of:

- Virtual Product Development based Smart Engineering,
- Sustainable Product Lifecycle Management (PLM)
- Process Integration / Optimization
- Industrie 4.0

TECHNIKWISSENSCHAFTEN AKADEMIE DER SCIENCE AND ENGINEERING

NATIONAL ACADEMY OF

Wissenschaftliche Gesellschaft für Produktentwicklung WiGeP

Berliner Kreis & WGMK

The Impact of Information and Communication Technology(1)

The Impact of Information and Communication Technology(2)

Overview

1. Introduction

2. Fundamental Approaches of Industrie 4.0 Technology

- RAMI 4.0 The Reference Architecture Model Industrie 4.0
- Cyber-Physical Systems
- Internet Technology
- Manufacturing Objects as Information Carriers
- Holistic Approach for Safety, Security, Privacy and Knowledge
 Protection
- 3. Use Case Scenarios
- 4. Transfering Industrie 4.0 to Industry
- 5. Conclusion

Approaches for Smart Systems

RAMI 4.0

Reference Architecture Model Industrie 4.0

Source: Umsetzungsstrategie Industrie 4.0, BITKOM, VDMA, ZVEI; April 2015

RAMI 4.0 Reference Architecture Model Industrie 4.0

TECHNISCHE UNIVERSITÄT

DARMSTADT

Quelle: nach Umsetzungsstrategie Industrie 4.0, BITKOM, VDMA, ZVEI; April 2015

Industrie 4.0 Component

Quelle: Umsetzungsstrategie Industrie 4.0, BITKOM, VDMA, ZVEI; April 2015

Cyber Physical Systems

Cyber Physical Systems are resulting from two views:

- "cyberizing the physical" for specifying physical subsystems with computational abstractions and interfaces and
- "physicalizing the cyber"

for expressing abstractions and interfaces of software and network components to represent physical systems' dynamics in time [LEE2010]

Source: [LEE2010]

Lee, E. A.: CPS Foundations. In: Proceedings of the 47th Design Automation Conference (DAC). ACM/IEEE, June, 2010, S. 737 – 742

Industrie 4.0: Internet technologies Internet of Things, Services and Data

Internet of Things (IoT)

- Communicating objects based on internet technologies
- Detection and identification using IPv6-addresses (128 bit address space) Advantages:
- Detection, identification and location of physical objects
- Communication through connectivity

Every physical object might be equipped with an IPv6-address

Internet of Sevices (IoS)

- New approach to provide internet based services
- Concepts for product specific services on demand, knowledge provision and services for controlling product behaviour
- · Interaction between people, machines and systems to improve added value

Service based added value processes

Internet of Data (IoD)

- Data is managed and shared using internet technologies
- Cyber-physical systems are producing big data
- Fundamental prerequisite: Development of a holistic security and safety culture
 → establish sustainable trusted environments

> Manage big data: integrate product and production data

Bluetoot

Industrie 4.0: Components as Information Carriers Identification, Localisation, Addressability, Connectivity

TECHNISCHE UNIVERSITÄT

DARMSTADT

Holistic Approach for Security and Safety

Technology Layer

TECHNISCHE

UNIVERSITÄT DARMSTADT

Implementation Strategy

TECHNISCHE UNIVERSITÄT DARMSTADT

Information

value added chain new business models interconnection and communication

Industrie 4.0 for the Enterprise

value stream analysis and identification of improved value creation based on interconnection and communication

Spezification of Use Cases

use cases specification for application szenarios detailed description of how to inprove flexibility and efficiency

implementation roadmap, connectivity spezification of the ICT-infrastructure, technology selection (e.g. web services), holistic security ans safety concept

Implementation Strategy

implementation plan, production processes production data flows, control structures functional operations

Implementierung of Use Cases

Overview

- 1. Introduction
- 2. Fundamental Approaches of Industrie 4.0 Technology
 - RAMI 4.0 The Reference Architecture Model Industrie 4.0
 - Cyber-Physical Systems
 - Internet Technology
 - Manufacturing Objects as Information Carriers
 - Holistic Approach for Safety, Security, Privacy and Knowledge Protection

3. Use Case Scenarios

- 4. Transfering Industrie 4.0 to Industry
- 5. Conclusion

Use case 1: Components as information Carriers (1)

HAUPTHEND	ALLS OF BUTTLE		BALTER.		HERTOURS		0403.70%
	Zylinderboden	Ahmesoung	Soll-West Jowel	to Wetherd Ab	welchung (ren)		
	210.054	10.010	39.4	29.30	0.05	Sec.	
	Fertigung					1.000	
		Lowige	59.3	\$9.29	-0.01		
	Montage						
		Hadho	14.5	14.46	-0.82		
Calif.							
P000							
antwortlisher				Stang			
til por				Steinmetz.			
be				net .			
(produkt				MG_OE5			
internal and	Ter			Mahler		Datas	
0828130842200	Decine			W.005		Arbeit most anno 1	
08.2010/08/02/41	Ende			W. 005		Arbeit succession 1	
08,7012 08:37.45	region		W_000			Atheit successory T	
98,2913 08 33 48	Ende			W.002		Adoption organics 7	
98.2913-06:50:05	Boginm			WL001		Arbeitsvorgang=5	
00.2810-00:51-29	End	0		W_001		Arbeits+organg=2	
08.2013/09/01/06	Dag	ine.		W.007		Advectoring angula	
08.2913/09/04/06	End	e		W.007		Arbeitsnoegang+4	
08.7913-09:30:00	Beg	in m		WL008		Arbeitsnorgang=5	
65 2915-09-30 5a	End			W-006		A shall an or same 5	

HAUPTMENÜ	ALLE EINZELTEILE		BAUTEIL		FERTIGUNG		EINZELTEIL
	Zylinderboden	Abmessung	Soll-Wert (mm)	ist-Wert [mm]	Abweichung [mm]		
	210.054	Breite	59.3	59.27	-0.03	6	
	Fertigung	Laenge	59.3	59.32	0.02	Some and	
	Montage	Harte	14.5	14.52	0.12		
Foto							
intwortlicher				Galaske			
be produkt				grün BG_005			
tstempel	Τνρ			Melder		Daten	
11.2013 08:02:03	Begin	n		W_005		Arbeitsvorgang=1	
1.2013 08:02:41	Ende			W_005		Arbeitsvorgang=1	
11.2013 08:32:45	Begin	n		W_002		Arbeitsvorgang=2	
11.2013 08:33:46	Ende			W_002		Arbeitsvorgang=2	
11.2013 08:50:05	Begin	n		W_001		Arbeitsvorgang=3	
11.2013 08:51:23	Ende			W_001		Arbeitsvorgang=3	
11.2013 09:01:06	Begin	n		W_007		Arbeitsvorgang=4	
11.2013 09:04:05	Ende			W_007		Arbeitsvorgang=4	
.11.2013 09:30:09	Begin	n		W_006		Arbeitsvorgang=5	
0.11.2013 09:30:59	Ende			W_006		Arbeitsvorgang=5	

Uses Case 2 – Efficient Production

Use Case 2 – Efficient Production

Environment of an offensive for increasing efficiency

Use Case 2 – Efficient Production TECHNISCHE Effiziente Fabrik 4.0 Hessen: Fit für die Produktion von morger UNIVERSITÄT **Project Structure & Goals** DARMSTADT **Content:** Goals: Industrietyp **Project phase:** Identification and Analysis of Demonstration of existing Good-Practice potential and the Pilot study /ernetzuna examples in the industry particular benefit Implementation Auswahl: **Development of a Concept** Concept concepts for Kosten of Implementation for development experimental field Qualität selected Examples build up on CiP Hard- and Software **Experimental field** in real production Implementation of the Demonstrator conceptualized examples environment Implementation and Validation of benefit Didactic revision of the Provision of Knowledge results. Buildup of expertises expertises and transfer for industrial partners. competence of Implementation of a methods of hessian workshop series companies

Use Case 3: Additive Manufacturing (1)

Use Case 3: Additive Manufacturing (2) Monitoring a Manufacturing Process

DiK-Reprap: Internetgestützte generative Fertigung

🐣 "dik" 👻

Use Case 3: Additive Manufacturing (3)

Overview

- 1. Introduction
- 2. Fundamental Approaches of Industrie 4.0 Technology
 - RAMI 4.0 The Reference Architecture Model Industrie 4.0
 - Cyber-Physical Systems
 - Internet Technology
 - Manufacturing Objects as Information Carriers
 - Holistic Approach for Safety, Security, Privacy and Knowledge
 Protection
- 3. Use Case Scenarios
- 4. Transfering Industrie 4.0 to Industry

5. Conclusion

Platform Industrie 4.0

The New Platform Industrie 4.0

Plattform Industrie 4.0

13. Mai 2015 | Fachbereich 16 | Fachgebiet Datenverarbeitung in der Konstruktion | Prof. Dr.-Ing. R. Anderl

Stand: 13. Mär212015

Implementation Strategy for Industrie 4.0 Status: 14. April 2015

Research and Implementation Roadmap of the Platform Industrie 4.0

The Internationale Dimension

European Activities

TECHNISCHE UNIVERSITÄT DARMSTADT

13. Mai 2015 | Fachbereich 16 | Fachgebiet Datenverarbeitung in der Konstruktion | Prof. Dr.-Ing. R. Anderl

Overview

- 1. Introduction
- 2. Fundamental Approaches of Industrie 4.0 Technology
 - RAMI 4.0 The Reference Architecture Model Industrie 4.0
 - Cyber-Physical Systems
 - Internet Technology
 - Manufacturing Objects as Information Carriers
 - Holistic Approach for Safety, Security, Privacy and Knowledge
 Protection
- 3. Use Case Scenarios
- 4. Transfering Industrie 4.0 to Industry

5. Conclusion

Conclusions

Industrie 4.0 is a key initiative of the German hightech strategy supported by the German government and to be implemented by industry.

Key strategy of Industrie 4.0 is the creation of new innovation for smart systems such as smart products, smart production systems, smart logistics or smart grids based on the integration of internet based communication and embedded control software to ensure sustainablity and environmental soundness.

Future research activities will also need to address

- safety, security, privacy and knowledge protection,
- new business models as well as
- human factors impact

New advanced engineering methods are required to support the developemnt of smart products able to self-control their functionality and to communicate with other smart systems as well as with humans.

Industrie 4.0 is a fscinating technology and each enterprise has to decide whether and if so how to implement Industrie 4.0.

Source: Potthast Fachschaftenkonferenz