

Sustainable Industry Ecosystem

Sustainable

Prof. Dr. Minna Lanz minna.lanz@tuni.fi

Tampere University

Test before invest with pilot lines - How to collaborate between industry and academia

Challenges from the field

Test and experiment facilities (TEFs) and Pilot Lines

Educational collaboration

Joint Research projects

Industry examples

*H2020, Horizon Europe

Key technology trends covered:

- Ecommerce retailers will embrace customer immersion technologies.
- Encryption/data privacy services will become mandatory—and profitable.
- Automation & robotics will infiltrate all stages of the supply chain.
- We've only just scratched the surface of virtual care.
- From Cobots & Beyond: Factory automation will boom.

IFR: Operational stock of industrial robots – world

IFR releases paper "A Mobile Revolution"

Ref: https://hokuyo-usa.com/resources/blog/what-expect-mobile-robotic industry-2021

How to speed up skills development and technology up-take

Test and Experiment, network and Skills development, and collaboration

Data sharing ownership

Collaboration **Networks**

Best practices Support

Resources

Training education

use **Open access Validation**

Certification **Standards**

Demonstrators Regional

Easy access &

FMS Training Centre

- Joint educational factory FMS Training Center located in the Fastems Factory floor.
- Up and running since 1999
- Co-owned by Fastems Oy, Tampere University, Tampere University of Applied Science and Tampere Vocational school
- BSc and MSc level exercises for students and for Fastems customers
- Testing of both HW and SW solutions

RoboLab Tampere – for small scale test and experiments for academy-industry collaboration

https://research.tuni.fi/robolabtampere/

Mid-Heavy robotics testing environment @TAU HRC Pilot Line

- Human-Robot Collaboration Pilot Line for academy-industry collaboration
- Fully reconfigurable robotics lab for Mid&Heavy-duty assembly applications
- Full AR/VR capabilities
- Safety:
 - ABB Safe Move, Laser Scanners, Light curtains
 - House-build 3D depth sensor based safety, monitoring and interaction system

https://research.tuni.fi/hrc-pilotline/

University-Industry joint skills development

Type of activity	Example	Target group
BSc theses MSc level laboratory courses for Robotics Major, and minor in In- dustrial Robotics	BSc theses with industrial robotics and signal processing MSc level education: Phenomena based and highly problem-solving oriented laboratory courses with industrial case problems and modern industry robots	BSc. Level students MSc. Level students
MSc theses	Hand movement tracking with depth sensors and motion duplica- tion with robot arm, Learning motion generating dynamical systems from human demonstration, Evaluation of Human-Robot Collaboration (HRC) in light-weight assembly task	MSc. Level students
D.Sc. thesis/academic research	Vision-Based Mobile Manipulation, Vision based safety system in HRC	PhD/D.Sc. level students, Industrial partners
Pre-competitive re- search	Feasibility testing of HRC capabilities, feasibility test on manipulation of small and flexible parts, Technology transfer	Industrial partners

https://www.youtube.com/channel/UCokZXa5w80D51MGTD COiUWw

Tampere University

Voice jogging of robot arm

Kone533 Robotics Project Work Ara Jo Mikko Kulju Niklas Sorri Omar Hassan

MSc students' project works

H2020 TRINITY 2019-2023

Network of DIHs

Demo Program 1 (2021)

- 19 consortiums, 44 partners,
 14 European countries
- Total budget 4.66 M€
 Demo Program 2 (2022)
- 18 consortia funded
- 47 partners,20 countries
- Total budget 3,37 M€

Sustainable services & business model

Digital Technologies, Advanced Robotics and increased Cybersecurity for Agile Production in Future European Manufacturing Ecosystems (TRINITY) DT-ICT-02-2018 - Robotics - Digital

Innovation Hubs (DIH)

Budget: 16,1 M€

Runtime: 1/2019-6/2023

Critical mass of use case demonstrations

Highlights from the H2020 TRINITY

From Internal demonstrations

To Demonstration Program 1 Results

And to communication to the wider robotics developers and users

TRINITY CATALOG

TRINITY TRAINING PLATFORM ROADMAP

trinity
ENGAGE WITH
AGILE MANUFACTURING

https://trinityrobotics.eu

http://www.odin-h2020.eu

Collaboration examples from the companies

Collaboration between Fastems and Tampere University

8760 Fastems

- We host the FMS training center
 - Several courses utilise this environment in their education.
 - We also offer factory visits for the student groups
- There are 6-9 masters' theses done annual basis
- We give introductory lectures to flexible manufacturing and machinery safety for BSc and MSc students yearly
- We have taken part to H2020 TRINITY research project as a core partner
- And we are involved in many Finnish nationally funded projects yearly
- We take part to advisory boards of different research projects and provide industrial view for the e.g. invéstment plans

Mr. Teemu-Pekka Ahonen, Fastems www.fastems.com

https://research.tuni.fi/virtualfms/

Dr. Juho Vihonen
Technical Lead, Automation Al
<u>juho.vihonen@cargotec.com</u>
www.cargotec.com

Collaboration between Cargotec and TAU

Cargotec optimises global cargo flows and creates sustainable customer value through electrification, robotisation and digitalisation. Cargotec's sales in 2021 totalled to €3.3B and it employs about 11.000 people.

- We complete several masters' theses annually company wide
- We offer company visits for engineering students and research academics
- We are involved in many national and EU funded projects yearly
- We frequently engage bi-lateral research services from TAU
- We combine research and innovation via DSII (Doctoral School for Industry Innovation, https://www.dsii.fi)

Foreseeable research areas in the domain of intelligent systems include mobile manipulation, sustainable autonomy, metaverse for robots and mixed mode operations, see, e.g., this <u>video</u>.

Conclusions

- The collaboration is in different levels.
 - Basic level: Factory visits, introductory lectures
 - Intermediate level: BSc & MSc education, group works, MSc theses
 - Advanced: National and International collaborative projects
 - Advanced+: Own doctoral students (e.g. DSII in Finland)

Shared Facilities

- Should be designed together to maximize the potential Test and Experiment facilities or Pilot Lines
- Real industrial cases with University build SW&HW prototypes
- Co-ownership to ensure the longevity of the facilities (and maintenance of the equipment)

Many thanks!

